Heat treatment of wood in Germany—state of the art

Andreas O. Rapp and Michael Sailer

Bundesforschungsanstalt für Forst- und Holzwirtschaft
Hamburg, Germany
1 Introduction

After the introduction this paper will follow the structure and questions given by the organisers. By this the maximum comparability with the other heat-treatment processes shall be provided for the reader.

Thermal wood improvement processes have been developed and optimised in various countries for a considerable time. Stamm et al. (1946) reported on the first systematic attempts to increase resistance to wood-destroying fungi in a hot metal bath. Buro (1954, 1955) studied the heat treatment of wood in different gaseous atmospheres and in molten baths. Other aspects of the thermal treatment of wood were pursued in subsequent years. Interest often focused on the drying characteristics (Schneider 1973) and the chemical changes of heat-treated wood (Sandermann and Augustin 1963a; Kollmann and Fengel 1965; Topf 1971; Tjeerdsma et al. 1998) as well as increased dimensional stability (Kollmann and Schneider 1963) and changes in strength (Schneider 1971, Rusche 1973). Burmester (1973) found improved wood characteristics on applying a thermal pressure treatment. This process was further developed by Giebeler (1983). There have been continuing attempts to improve wood by thermal treatment for some years, especially in Finland, France and some other European countries (e.g. Dirol and Guyonnet 1993; Viitanen et al. 1994; Troya and Navarette 1994; Boonstra et al. 1998; Tjeerdsma et al. 1998; EC project BRE-CT-5006, 1998). The various wood improvement processes are documented in patent specifications (e.g. EP0018446, 1982; EP0612595, 1994; EP0623433, 1994; EP0622163, 1994; EP0759137, 1995; US5678324, 1997). In most of the publications on the heat treatment of wood, reference is made to improved dimensional stability and increased resistance to fungi, though also to negative changes in the wood’s characteristics. The high temperatures during treatment increase the brittleness and the formation of cracks, in particular. Spotted surfaces due to exudation of rosin and low UV resistance of the heat-related brown hue also prove to be problematic during practical use of the wood. More recent investigations point to a lower resistance to fungi of heat-treated wood in contact with soil than suggested by earlier findings (Jämsä and Viitaniemi 1998; Rapp et al. 2000). The aim of the procedural approach presented here, which is based on the heating of wood in hot oil, is to improve some of these critical characteristics.

Heat treatments usually take place in an inert gas atmosphere at temperatures between 180 and 260°C (Leithoff and Peek 1998). The boiling points of many natural oils and resins are higher than the temperature required for the heat treatment of wood. This opens up the option of the thermal treatment of wood in a hot oil bath. Improvements in various wood characteristics can be expected from the application of oil-heat treatment as compared with heat treatment in a gaseous atmosphere, due to the behaviour of oils in conjunction with the effect of heat.
2 Short information about the equipment and process

2.1 The principle design of the plant
The principle design of the plant can be seen from Fig. 1. The process is performed in a closed process vessel (PT). After loading the process vessel (PT) with wood, hot oil is pumped from the stock vessel (VT) into the process vessel (PT) where the hot oil is kept at high temperatures circulating around the wood. Before unloading the process vessel (PT) the hot oil is pumped back into the stock vessel (VT).

2.2 Temperatures used during the process
For different degrees of upgrading, different temperatures are used. To obtain maximum durability and minimum oil consumption the process is operated at 220°C. To obtain maximum durability and maximum strength temperatures between 180°C and 200°C are used plus a controlled oil uptake.

2.3 Process times
It proved to be necessary to keep the desired process temperature (for example 220°C) for 2-4 hours in the middle of the wooden pieces to be treated. Additional time for heating up and cooling down is necessary, depending on the dimension of the wood. Fig. 2 gives an example of the a heating up phase for logs with a cross section of 90 mm by 90 mm.
Typical process duration for a whole treatment cycle (including heating up and cooling down) for logs with a cross section of 100 mm x 100 mm and length of 4 meters is 18 hours.

2.4 Heating medium

The heating medium is crude vegetable oil. For example rape seed, linseed oil or sunflower oil. The oil serves for both,
- fast and equal transfer of heat to the wood, providing the same heat-conditions all over the whole vessel
- perfect separation of oxygen from wood

Natural plant oils lend themselves to the oil-heat improvement of wood from an environmental point of view and because of their physical and chemical properties. As renewable raw materials they are CO₂ neutral. The use of other plant oils, such as rape seed oil, sunflower oil, soybean oil or even tall oils or tall oil derivatives in addition to drying oils such as linseed oil, is also conceivable. Linseed oil proved to be unproblematic though the smell that develops during the heat treatment may be a drawback. The smoke point and the tendency to polymerisation are also important for the drying of the oil in the wood and for the stability of the respective oil batch. The ability of the oil to withstand heating to a minimum temperature of 230°C is a prerequisite. The consistency and colour of the oil change during heat treatment. The oil becomes thicker because volatile components evaporate, the products arising from decomposition of the wood accumulate in the oil and change its composition. This obviously leads to improved setting of the oils.

Fig. 2. Course of temperature in the oil and wood during the phase of heating up. *Picea abies* L. Karst., with a cross section: 90 x 90 mm².
3 Costs

3.1 Plant – purchase cost
The investment for a capacity of 8500 m³/a is 450,000 €.
Based on a 10 years period of use, 5.2 €/m³ are the calculated depreciation.

3.2 Plant – operation cost
The operation costs for treatment of spruce are 60 to 90 €/m³, depending on the desired oil loading.

3.3 Cost per treated cubic meter timber
The costs for 1 m³ of oil-heat-treated spruce are 265 to 295 €/m³ based on costs for untreated timber of 200 €/m³.

4 Documented properties

4.1 Introduction
Before determining the properties, the material was treated as follows:
Fresh, untreated pine (Pinus sylvestris L.) and spruce (Picea abies L. Karst.) were used for the oil-heat treatment. The specimens with a wood moisture content of 6% were heated at three temperatures (180°C, 200°C and 220°C) unpressurised and with exclusion of oxygen in an oil bath of refined linseed oil. On the oil reaching the desired temperature, the wood specimens were immersed in it for 4.5 hours. Virtually no oil was absorbed during the actual heat treatment. To achieve the desired oil loading, the specimens cooled off in the oil bath for 15 minutes. Reference samples were also treated for 4.5 hours at corresponding temperatures in a drying chamber in an air atmosphere.

4.2 Biological durability based on tests

4.2.1 Rot
The oil-heat treated specimens and specimens treated in a hot air atmosphere were tested for resistance to Coniophora puteana in accordance with DIN EN 113 (1996).
This was done using spruce as well as pine sapwood because the oil loading was different, even though they were subjected to the same treatment, due to the different impregnability of the two types of wood. Treated specimens and untreated controls were incubated in a Kolle flask for 19 weeks. The percentage loss of mass was determined in relation to the pure wood mass after treatment.
Untreated spruce controls showed 48% loss of mass and pine controls 40% loss of mass. The resistance of heat-treated spruce and pine to the brown rot fungus C. puteana was improved with increasing temperatures. Treatment of wood in hot air did not prevent an attack of C. puteana. An average mass loss of 11% was determined for Scots pine, 5.5 % for spruce (Tab. 2).
Table 1: Mass loss after 19 weeks exposition of heat treated specimens according to DIN EN 113 (Fungus: *Coniophora puteana*).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Oil-heat-treated pine sapwood</th>
<th>%</th>
<th>Air-heat-treated pine sapwood</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>180°C</td>
<td>1.1</td>
<td>13.0</td>
<td>2.3</td>
<td>25.0</td>
</tr>
<tr>
<td>200°C</td>
<td>0.1</td>
<td>1.9</td>
<td>1.1</td>
<td>13.1</td>
</tr>
<tr>
<td>220°C</td>
<td>0.1</td>
<td>2.0</td>
<td>0.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

A noticeably lower loss of mass was determined for oil-heat treated specimens than for air-heat treated specimens. A loss of mass of less than 2% was found in the case of pine sapwood, when oil-heat treatment was applied at 200°C. With spruce, on the other hand, a decisive increase in resistance was only obtained at 220°C.

4.2.2 Stains and mould
Weathering tests in the field have shown, that superficial treatments are necessary to prevent the nice brownish coloured wood from bleaching and staining.

4.2.3 Insects
Insect tests have not been performed with oil-heat-treated wood in Germany.

4.2.4 Termites
Termite tests have not been performed with oil-heat-treated wood in Germany.

4.2.5 Marine borers
Marine tests with heat-treated wood and oil heat-treated wood are currently running. Preliminary results after 1 year do indicate that both, heat-treated wood and oil heat-treated wood are not resistant against marine borers.

4.3 Technical properties

4.3.1 MOE, MOR, Impact bending strength, brittleness
The MOE and MOR was determined in a three point bending test with medium force applied on 150x10x10 mm³ treated and untreated wooden slats parallel to the grain on a universal testing machine. Tests of the impact bending strength provide information on the dynamic stability of wood specimens. They were performed using a Louis Schopper pendulum impact machine. The changes in the impact strength due to oil-heat or air-heat treatment were calculated in relation to untreated specimens of the same type of wood.

The highest MOE of more than 11,000 N/mm² were achieved at 200°C in the case of oil-heat treated specimens (Fig. 3). There was no reduction in the values for the MOE of elasticity of untreated coniferous wood with either heat treatment process.
The MOR of wood which was oil-heat-treated at 220°C was about 70% of the value of untreated controls. The impact bending strength is the most critical value for all kinds of heat treatments. It declines considerably and the wood becomes brittle. Oil-heat-treated wood achieved a 51% and air heat treated wood only 37% of the impact bending strength of untreated controls as the treatment temperature increased (Fig. 4).
4.3.2 Smell
Like all heat treated woods also oil-heat-treated wood has that initially typical smoky smell. This could lead to limitations in use in internal areas, though this smell evaporates after some time. In any case this should hardly be a problem outdoors.

4.3.3 Colour and surface properties
At the end of the treatment cycle the oil remaining on the surface of the wood was absorbed by the wood very quickly during the cooling down of the specimens so that a dry wood surface appeared a few minutes after treatment. The surfaces were light brown in colour at lower treatment temperatures and dark brown at higher treatment temperatures. Unlike the air-heat treated specimens, no spotted discoloration due to the uneven distribution of exudated rosin was found on oil-heat treated specimens.

4.3.4 Paintability
The paintability of oil-heat-treated wood for acrylic water based paints as well as for alkyd solvent based systems proved to be good during two years of weathering. Surprisingly after two years the adhesion of the paints and varnishes on the oil-heat-treated wood was even better than on gas-heat-treated wood.

4.3.5 Glueability
Initial tests have been made with the following results: After planing of oil-heat-treated spruce, gluing was no problem. However for oil-heat-treated pine with higher oil uptake, only modified glues lead to good results.

4.3.6 Weathering properties
For heat treated softwoods its typical initial brownish colour is not UV-stable without surface treatments. After a half year of weathering in the field the colour of oil-heat-treated spruce came close to that of weathered untreated larch heartwood.

4.3.7 Hygroscopicity
If the oil-heat-treatment is performed for 4 hours at 220°C then the moisture content at fibre saturation was 14% whereas the moisture content of untreated controls was 29% under the same conditions.

4.3.8 Dimensional stability and cracking
Specimens for the examination of swell and shrink improvement (ASE) were exposed to a temperature of 20°C and a relative humidity of 35%, 65% and 85% after the oil-heat treatment. The dimensions of the specimens subjected to the above climatic conditions were determined after their masses becoming constant. The ASE was calculated from the ratio of the percentage volumetric change of the treated specimens in relation to the volumetric change of untreated wood specimens.

The improvement in the ASE of specimens that were treated at 220°C was similar for both types of treatment, at about 40%. The degree of improvement in this case depended on the relative humidity. When humidity was increased, the ASE became lower, with less difference in the specimens treated at higher temperatures than in those treated at lower temperatures (Fig. 5 to Fig. 7).
Fig. 5. ASE between 0 and 35% relative humidity of treated *Pinus sylvestris* L. (10x20x20 mm³), n=4

Fig. 6. ASE between 0 and 65% relative humidity of treated *Pinus sylvestris* L. (10x20x20 mm³), n=4
In Anglo-Saxon literature the term ASE (anti-swell efficiency or anti-shrink efficiency), coined by Stamm (1964) to describe the reduced swell or shrink of treated wood compared to untreated controls, has become established. In this case the swell or shrink characteristic of wood is determined under laboratory conditions with appropriate climatic conditions. However, it is not yet possible to make a statement on dimensional stability under open land conditions on the basis of these values because experience shows that the behaviour of samples subject to the multi-faceted stresses of open land is different from their behaviour under laboratory conditions. But since the ASE is easy to determine, it is often ascertained and therefore offers a good means for comparison of the various wood improvement processes. It is expected that the dimensional stability of oil-heat-treated samples will prove to be better in open land than that of wood that has undergone conventional heat-treatment in an oxygen-free gas atmosphere, due to the additional water-repellent effect of the oil component. Among other things this should have a beneficial effect on the stability of surface treatments, and on reduced crack formation during weathering. On the whole, the ASE values are consistent with the findings of Seborg et al. (1953) and Tjeerdsma et al. (1998b).

5 Wood Species

5.1 Suitable wood species
Unlike wood impregnation processes in which protective substances are introduced into the wood, even larger-dimensioned wood of types that are difficult to impregnate can be protected right into the inner areas of the log by oil-heat improvement. In
Germany this applies in particular to spruce, which is available in large quantities at favourable prices.
The whole chain from basic research, standard testing to process optimisation was done for spruce (*Picea abies*) and pine (*Pinus sylvestris*).

5.2 Adoption of process parameters for different wood species
The use of the refractory spruce and the permeable pine sapwood allows to vary the oil uptake within a wide range. The process can be run with spruce with minimum oil uptake (20 to 60 kg/m³ depending on the dimension) when no pressure is applied. If high durability and high strength properties are desired, then pine can be used at lower temperatures but with higher oil uptakes (see Table 1). By application of pressure in the process the desired uptake can easily be adjusted.

5.3 Influence of wood species on durability
The combination of vegetable oils and heat treatment led to greater improvement in the resistance of wood to *Coniophora puteana* than heat treatment in air. Besides the pure thermal modification at high temperatures the oil uptake contributes to the durability (see Table 1). It is conceivable to use oil-heat treated wood with a higher oil-loading under more sever conditions in European hazard class 3. In European hazard class 4, high oil loading extends the service life of oil-heat-treated wood, compared to heat treated wood with no oil uptake.

5.4 Influence of wood species on technical properties
Regarding technical properties, the investigated species, spruce and pine, did not reveal particular differences of the oil-heat-treated wood.

5.5 Recommended species for the treatment
There are no species excluded from oil-heat-treatments. However the most experience exists for the treatment of Norway spruce and Scots pine. For most commodities in European hazard class 3 Norway spruce is suitable.

6 Suitable commodities
- cladding
- pergolas
- external joinery
- garden furniture
- decks
- fencing
- noise barriers
- wood in soil contact (treated at high temperatures and high oil loadings)
7 Industrial production

7.1 Plants in commercial use
There is currently one plant in commercial use in Germany. The plant (Fig. 8) is operated since August 2000 by MENZ HOLZ in Reulbach, 30 km east of the city of Fulda. MENZ is intending to cover the German marked segment of oil-heat-treated wood for garden furniture and wood for gardening. The company is interested to find partners for licensed production of oil-heat-treatment wood for different market segments in all European countries.

Fig. 8: Process vessel for the oil-heat-treatment in Reulbach. (Foto: MENZ HOLZ, Germany).

7.2 Produced volume per annum
The existing vessel has a capacity of 2900 m³/a. The future vessels planned by MENZ have typical capacities of 8500 m³/a.

8 Quality control and quality assurance

8.1 Production control at the plant (internal control)
The process is computer controlled. Data of the following values are controlled and logged:
- time
- oil consumption (= oil uptake)
- temperature inside the wood
- oil temperature
- pressure
Each batch is documented by the full set of computer process data in a diagram.
From each batch samples are drawn for determination of the DIV = durability indicator value and the SIV = strength indicator value.

The methods and procedures for determination of the DIV and SIV of heat treated wood are developed by BFH (Federal Research Centre of Forestry and Forst Products, Hamburg, Germany) in the frame of an ongoing research project for quality control of heat treated wood.

8.2 External control
MENZ is intending to assure quality of oil-heat-treated wood by external quality control.

8.3 Marking/labelling requirement
MENZ is intending to set up a marking/labelling system for the different qualities of oil-heat-treated wood.

8.4 Possibility of quality testing after leaving the plant
The DIV and SIV are meant for quality assessment of material after leaving the plant, since they are based on analysis of the treated material and therefore independent of the batch documentation of the process.

9 Information about ongoing research and development projects
- BFH is currently developing a quality control system for heat treated wood on the basis of DIV and SIV.
- BFH is currently running comparative assessment of properties of heat treated wood produced after 4 different processes in different countries.
- BFH has together with Swedish University of Agricultural Sciences Uppsala (SLU) and Chalmers University ongoing field tests to assess the long term performance of heat treated wood.

Recent results of research projects of BFH are published in:

10 Thanks
The authors thank MENZ HOLZ, D-36115 Reulbach, Germany (Fax +49 6681 96 01 50) for providing the parts: 3, 6, 7, 8.2 and 8.3 of this paper.
11 Literature

EC Bericht BRE-CT-5006 (1998) Upgrading of non durable wood species by appropriate pyrolysis thermal treatment. EC-Industrial & Materials Technologies Programme (Brite-EuRam III), 17 p

Patents:

EP0018446 1982: Verfahren zur Vergütung von Holz, 5 p

Tjeerdsma BF, Boonstra M, Militz H (1998a) Thermal modification of non-durable wood species II. IRG/WP 98-40124, 10 p

Troya MT, De Navarrete AM (1994) Study of the degradation of retified wood through ultrasonic and gravimetric techniques. IRG/WP 94-40030, 6 p
